Longman Scientific & Technical, Longman Group UK Limited, Longman House, Burnt Mill, Harlow, Essex CM20 21E, England and Associated Companies throughout the world,

Copublished in the United States with John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158

© Longman Group UK Limited 1991

All rights reserved; no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without either the prior written permission of the Publishers or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd. 33-34 Alfred Place, London, WCTE 7DP.

First published 1991

AMS Subject Classification: (Main) 35P, 45A, 45M (Subsidiary) 35L, 81F, 45L

ISSN 0269-3674

British Library Cataloguing in Publication Data Integral equations and inverse problems.

1. Integral equations
1. Petkov, Vesselin II. Lazarov, Raitcho 515.45

ISBN 0-582-07766-4

Library of Congress Cataloging-in-Publication Data
Integral equations and inverse problems / Vesselin Petkov and Raitcho Lazarov, editors.

p. cm.—(Pitman research notes in mathematics series; 235)
Papers presented at the International Conference on Integral Equations and Inverse Problems, held in Varna, Bulgaria, 1989.
ISBN 0-470-21674-3
1. Integral equations—Congresses. 2. Inverse problems
1. Petkov, Veselin. II. Lazarov, Raitcho.
III. International Conference on Integral Equations and Inverse Problems
(1989: Varna, Bulgaria)
IV. Series.
OA431.1478 1990
515' 45-stc20

90-5575 CIP

Printed and bound in Great Britain by Biddles Ltd, Guildford and King's Lynn V Petkov and R Lazarov (Editors)

Institute of Mathematics, Bulgarian Academy of Sciences

Integral Equations and Inverse Problems

D.G. VASIL'EV

One can hear the dimension of a connected fractal in \mathbb{R}^2

Let Ω be a bounded domain in R^2 with boundary Γ ; it is assumed that Γ has zero measure. We consider an eigenvalue problem

$$-\Delta u = \lambda u, \qquad (1)$$

$$-\Delta u = \lambda u, \qquad (1)$$

$$u \mid_{\Gamma} = 0, \qquad (2)$$

where $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$ is the Laplacian acting on Ω . Problem (1), (2) is posed in variational form on functions from $H_0^1(\Omega)$.

Problem (1), (2) has a discrete spectrum $\lambda_1 \le \lambda_2 \le ... \le \lambda_k \le ...$ By $N(\lambda)$ we shall denote the eigenvalue distribution function, i.e. the number of eigenvalues λ_k below a given

It is known [1] that the following asymptotics holds

$$N(\lambda) = \frac{S}{4\pi}\lambda + o(\lambda), \quad \lambda \to +\infty,$$
 (3)

where $S = |\Omega|$ is the area (Lebesgue measure) of Ω . Thus the area of Ω is uniquely recovered from the spectrum. The aim of this work is to show that a certain real number $1 \le d^{(i)} \le 2$ having the sense of dimension and characterizing the degree of 'hairiness' of the boundary from the interior is also uniquely reconstructed from the spectum. Such 'hairy' objects are called fractals [2].

Let us give some definitions.

By Γ_e we shall denote the ϵ -neighbourhood of set Γ . The number d defined as the infimum of all positive δ such that

$$\limsup_{\varepsilon \to +0} \varepsilon^{\delta-2} |\Gamma_{\varepsilon}| < +\infty \tag{4}$$

is called [3], [4] the Bouligand-Minkowski dimension of Γ .

By $\Gamma_{\varepsilon}^{(i)}$, $\Gamma_{\varepsilon}^{(e)}$ we shall denote subsets of Γ_{ε} determined by relations $x \in \Omega$, $x \in \Omega$ respectively. Substituting in formula (4) Γ_{ε} by $\Gamma_{\varepsilon}^{(i)}$, $\Gamma_{\varepsilon}^{(e)}$ we define by analogy with dnumbers $d^{(i)}$, $d^{(e)}$. We will call these numbers respectively the interior and exterior Bouligand-Minkowski dimension of the boundary.

Finally by h we shall denote the Hausdorff dimension of the boundary defined [2] as the infimum of positive n such that

$$\lim_{\varepsilon \to +0} \left(\inf \sum_{j \in J} r_j^{\eta} \right) = 0. \tag{5}$$

The infimum in (5) is taken over all coverings of set Γ by balls of radii $r_i < \varepsilon$. It can be shown (see also [3], [4]) that

$$d, d^{(i)}, d^{(c)}, h \in [1, 2], d = \max(d^{(i)}, d^{(c)}), h \le d.$$
 (6)

Let us introduce the function

$$Z(t) = \sum_{k=1}^{+\infty} \exp(-\lambda_k t)$$

t > 0. It is known [5] that $Z(t) < S/4\pi t$.

We will call a compact set in R² connected if it cannot be divided into two non-empty subsets with a smooth compact curve separating them.

The principal result of this work is contained in the following

Theorem. If Γ has only a finite number of connected components then

$$-2 \liminf_{t \to +0} \frac{\ln(S/4\pi t - Z(t))}{\ln t} = d^{(i)}.$$
 (7)

Let us give an outline of the theorem's proof. Let u(x, y, t) denote the solution of the heat equation $+\Delta u = \partial u/\partial t$ with boundary condition (2) and initial condition $u \mid_{t=0}$ $\delta(x-y)$, $y \in \Omega$. Let $u_0(x, y, t) = (4\pi t)^{-1} \exp(-|x-y|^2/4t)$ denote the fundamental solution of the heat equation. Of course

$$Z(t) = \int_{\Omega} u(x, x, t) dx, \qquad (8)$$

$$0 \le u(x, y, t) < u_0(x, y, t), \quad x, y \in \Omega, \quad t > 0.$$
 (9)

Let $p(x, \Gamma)$ denote the distance from x to Γ . It can be shown that for sufficiently small t

$$u_0(x, x, t) - u(x, x, t) \le c_{\kappa \mu} t^{\mu}, \ \rho(x, \Gamma) \ge t^{\kappa} \ (\forall \ \kappa < 1/2, \ \forall \ \mu > 0),$$
 (10)

$$u_0(x,x,t)-u(x,x,t)>C\,t^{-1},\ \rho(x,\Gamma')\leq t^{1/2}. \tag{11}$$

In (11) C is a universal positive constant independent of Ω and $\Gamma' \neq \emptyset$ is a connected component of Γ with dimension $d^{(i)}$. Substituting (9)–(11) into (8) and using the definition of dimension $d^{(i)}$ we obtain (7).

The most delicate point in the arguments outlined above is obtaining estimate (11). It is interesting that in the case $\Omega \subset \mathbb{R}^n$, n > 3, an analogous estimate $u_0 - u \ge C t^{-n/2}$ does not hold and in place of (7) we have

$$-2 \liminf_{t \to +0} \frac{\ln(|\Omega|/(4\pi t)^{n/2} - Z(t))}{\ln t} \le d^{(i)}$$
 (12)

with effective examples of strict inequality. We must note that a somewhat weaker version of inequality (12) with d instead of $d^{(i)}$ (see also (6)) in the right-hand side was obtained in [4].

In conclusion let us discuss Berry's conjecture [6] on the existence of a two-term asymptotic expansion

$$N(\lambda) = a\lambda^{n/2} + b\lambda^{\nu/2} + o(\lambda^{\nu/2}), \quad \lambda \to +\infty,$$
 (13)

 $a = (2\pi)^{-n}B_n \mid \Omega \mid$, B_n is the volume of the unit ball in R^n , ν is the 'dimension' of Γ , b is a certain constant characterizing the ν -dimensional 'volume' of Γ .

The first problem arising in connection with (13) is how to define dimension V? Berry proposed V = h but a counterexample was constructed in [3]. It was proposed [3], [4] to take V = d. But it follows from (7), (12) that for the general case V = d also is not good because one can easily construct examples of domains Ω with $d^{(i)} < d$ (in this situation a contradiction can be avoided only if b = 0 which is rather an unnatural assumption).

Another remark on Berry's conjecture is that the form const $\lambda^{\nu/2}$ of the second asymptotic term is not obvious. If one considers a domain Ω with a self-similar [2] boundary Γ one can expect the two-term $N(\lambda)$ asymptotics to have the form

$$N(\lambda) = a\lambda^{n/2} + f(\ln \lambda)\lambda^{\nu/2} + o(\lambda^{\nu/2}),$$

where $f(\cdot)$ is a periodic function with period 2 ln s, s > 1 is the linear similarity coefficient, $v = d = d^{(i)} = d^{(e)}$.

References

 J. Fleckinger and G. Métivier, Théorie spectrale des opérateurs uniformément elliptiques sur quelques ouverts irréguliers, C.R. Acad. Sci. Paris, Ser. A, v. 276, 1973, p. 913-916.

- [2] B.B. Mandelbrot, The fractal geometry of nature, Freeman, San Francisco, 1982.
- [3] J. Brossard and R. Carmona, Can one hear the dimension of a fractal? Comm. Math. Phys., 1986, v. 104, p. 103-122.
- [4] M.L. Lapidus and J. Fleckinger, Tambour fractal: vers une resolution de la conjecture de Weyl-Berry pour valeurs propres du laplacien, C.R. Acad. Sci. Paris, Ser. I Math., 1988, v. 306, p. 171-175.
- [5] R. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R³, Adv. Math., 1978, v. 29, p. 244-269.
- 6l M.V. Berry, Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals, in Geometry of the Laplace Operator, Proc. Symp. Pure Math., v. 36, Amer. Math. Soc., 1980, p. 13-38.

D.G. Vasil'ev Institute for Problems in Mechanics, Academy of Sciences of USSR, Prospect Vernadskogo 101, 117526 Moscow USSR